
1

Shenandoah: An ultra-low pause

time garbage collector for

OpenJDK

Christine Flood
Principal Software Engineer
Red Hat

2

Why do we need another Garbage Collector?

● OpenJDK currently has:
● SerialGC
● ParallelGC
● ParNew/Concurrent Mark Sweep(CMS)
● Garbage First (G1)

3

Why do we need another Garbage Collector?

● OpenJDK currently has:
● SerialGC
● ParallelGC
● ParNew/Concurrent Mark Sweep(CMS)
● Garbage First (G1)

● Shenandoah
● Pause times similar to CMS.
● Region based like G1.
● Concurrent Compaction

4

Stack Frame
Method Foo

Heap

Reference

42Value

Reference

Stack Frame
Method Bar

Reference

Value 6.847

Reference

Reference

Reference

Why is concurrent compaction difficult?

C

ObjectObjectObjectObjectObjectObjectObjectA

B

5

Stack Frame
Method Foo

Heap

Reference

42Value

Reference

Stack Frame
Method Bar

Reference

Value 6.847

Reference

Reference

Reference

Pause to update the roots, and have heap object
accesses go through a forwarding pointer.

C

A

B

C'

Forwarding ptr

Forwarding ptr

Forwarding ptr

Forwarding ptr

6

Forwarding Pointers

Foo

Foo indirection pointer

Bar

Bar indirection pointer

● You can still walk the
heap.

● You can still choose
your GC at runtime.

● Software only solution.

7

Shenandoah divides the heap into regions.

Region 1

Region 2

Region 3

Region 4

Region 5

8

Region 1

Region 2

Region 3

Region 4

Region 5

20k

100k

500k

10k

70k

Regions Live Data

We use concurrent marking to keep track of the
live data in each region.

Region 6

Region 7

Region 8

Region 9

Region 10

200k

100k

empty

empty

empty

Regions Live Data

9

Region 1

Region 2

Region 3

Region 4

Region 5

20k
From-
region

100k

500k

10k
From-
region

70k

Regions Live Data

We pick the most garbage-y regions for
evacuation.

Region 6

Region 7

Region 8

Region 9

Region 10

20k

100k

to-region

empty

empty

Regions Live Data

10

Stack Frame
Method Foo

Heap

Reference

42Value

Reference

Stack Frame
Method Bar

Reference

Value 6.847

Reference

Reference

Object

Object

Object

Object

Array

ObjectObjectObjectObjectObjectObjectObject

Reference

Object

Concurrent Marking tells us which objects need
to be copied.

11

BAR

FOO'
FOO

BAR'

We evacuate the live objects while the Java
threads are running.

12

Reclaiming free space

● Eagerly
● Run another pass over the data to update

references.
● Lazily

● Wait for the next concurrent mark to update
references.

● Once the references have been updated we can
free the now empty regions.

13

Shenandoah

Java
Init
Mark

Java Final
Mark

Concurrent Mark Concurrent Evacuation

Java

We use as many threads as are
available to do concurrent phases.

14

A

B

From-Region To-Region

FOO A'

15

Added benefit to forwarding pointers

Object

We can be lazy
about updating
references to
objects in from
regions.

We no longer need
remembered sets.

16

Concurrent Marking

● SATB – Snapshot At The Beginning
● Anything live at Initial Marking is considered live.
● Anything allocated since Initial Marking is considered

live.
● Used to update references, keep track of amount of

live data for each region, and tell us which objects
are live and need to be evacuated.

17

What's tricky about SATB?

X

w

z

Y

X

Start of Concurrent Marking

Sometime during marking

Requires a write barrier to
ensure overwritten values get
marked.

y

18

How to move an object while the program is
running.

● Read the forwarding pointer to the from-region.

● Allocate a temporary copy of the object in a to-
region.

● Speculatively copy the data.

● CAS the forwarding pointer to point to the new copy.
● If the CAS fails, another thread already copied the

object and you can roll back your speculative copy.

19

Forwarding Pointers - reads

Reading an object in a From-region doesn't
trigger an evacuation.

A

B

From-Region To-Region

Note: If reads were to cause copying we might have a “read storm” where every operation
required copying an object. Our intention is that since we are only copying on writes we
will have less bursty behavior.

20

Forwarding Pointers - writes

Writing an object in a From-Region will trigger
an evacuation of that object to a To-Region
and the write will occur in there.

Invariant: Writes never occur in from-regions.

From-Region To-Region

A

B

A'

21

Forwarding Pointers – writes of references

We resolve all references before we write
them.

Invariant: Never write a reference to a from-
region object into a to-region object.

From-Region To-Region

A

B

A'

B

22

Forwarding Pointers - CAS

● CompareAndSwap(A.X, Foo, Bar)

From-Region To-Region

Foo

A

Bar

23

Forwarding Pointers - CAS

● CompareAndSwap(A.X, Foo, Bar)

From-Region To-Region

Foo

A

Bar

A'

24

Forwarding Pointers - CAS

● CompareAndSwap(A.X, Foo, Bar)

From-Region To-Region

Foo

A

Bar

A'

Foo'

25

Forwarding Pointers - CAS

● CompareAndSwap(A.X, Foo, Bar)

From-Region To-Region

Foo

A

Bar

A'

Foo'

26

Forwarding Pointers - CAS

● CompareAndSwap(A.X, Foo, Bar)

From-Region To-Region

Foo

A

Bar

A'

Foo'

Bar'

Now we can CAS.

27

Forwarding Pointers - CAS

● CompareAndSwap(A.X, Foo, Bar)

From-Region To-Region

Foo

A

Bar

A'

Foo'

Bar'

28

Does that mean a write could keep a Java thread
from making progress for an unbounded amount
of time?

● No

● Copies are bounded by region size.

● Objects that are larger than a region are treated
specially.

29

Read Barriers?

Unconditional Read Barrier

movq R10, [R10 + #-8 (8-bit)] # ptr

movq RBX, [R10 + #16 (8-bit)] # ptr ! Field:
java/lang/ClassLoader.parent

30

Write Barriers?

● We need the SATB write barrier which adds
previous reference values onto a queue to be
scanned.

● We also need write barriers on all writes (even base
types) to ensure we copy objects in targeted regions
before we write to them.

31

Costs and Benefits

● Costs

● Space
● An extra word /

object can be
expensive if you
have a lot of small
objects.

● Time
● Reads and Writes

require barriers

● Benefits

● Ultra-low pause times
which can be
important to interactive
and SLA applications.

32

Current status

● We have something working.

● We can pass small tests specjvm, specjbb

● We have passed the smoke test for
● Eclipse, Thermostat

● We are working on performance tuning
● Radargun, Elastic Search/Lucene

33

Performance Tuning

● One very important area for application specific
performance tuning will be Shenandoah heuristics.

● Lazy Heuristics
● GC as little as possible

● Aggressive Heuristics
● GC as frequently as possible to maintain minimum heap

size.

● ...

34

Encouraging preliminary results
SpecJVM2008 compiler

● Not our target application.

● We are just starting performance tuning.

● Shenandoah
● Initial Mark (avg=5.65ms,max=9.53ms, total=1.40s)
● Final Mark (avg=8.74ms,max=15.43ms,total=2.17s)

● As compared to G1
● (avg=31.38ms, max=75.48ms, total=6.84s)

35

References

● “Trading Data Space for Reduced Time and Code
Space in Real-Time Garbage Collection on Stock
Hardware” - Brooks

● “Garbage-first garbage collection” - Detlefs, Flood,
Heller, Printezis.

36

Future Work

● Finish big application testing.

● Move the barriers to right before code generation.

● Heuristics tuning.

● Round Robbin Thread Stopping?

● NUMA Aware?

37

More information

● Download the code and try it.
● http://icedtea.classpath.org/wiki/Shenandoah

● Blogs
● http://christineflood.wordpress.com/
● http://rkennke.wordpress.com/

● Email
● chf@redhat.com
● rkennke@redhat.com

http://christineflood.wordpress.com/
http://rkennke.wordpress.com/
mailto:chf@redhat.com
mailto:rkennke@redhat.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

