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Why do we need another Garbage Collector?

● OpenJDK currently has:
● SerialGC
● ParallelGC
● ParNew/Concurrent Mark Sweep(CMS)
● Garbage First (G1)
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Why do we need another Garbage Collector?

● OpenJDK currently has:
● SerialGC
● ParallelGC
● ParNew/Concurrent Mark Sweep(CMS)
● Garbage First (G1)

● Shenandoah
● Pause times similar to CMS.
● Region based like G1.
● Concurrent Compaction
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Forwarding Pointers

Foo

Foo indirection pointer

Bar

Bar indirection pointer

● You can still walk the 
heap.

● You can still choose 
your GC at runtime.

● Software only solution.



7

Shenandoah divides the heap into regions.
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We use concurrent marking to keep track of the 
live data in each region.
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We pick the most garbage-y regions for 
evacuation.

Region 6

Region 7

Region 8

Region 9

Region 10

20k

100k

to-region

empty

empty

Regions Live Data



10

Stack Frame
Method Foo

Heap

Reference

42Value

Reference

Stack Frame
Method Bar

Reference

Value 6.847

Reference

Reference

Object

Object

Object

Object

Array

ObjectObjectObjectObjectObjectObjectObject

Reference

Object

Concurrent Marking tells us which objects need 
to be copied.
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BAR
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We evacuate the live objects while the Java 
threads are running.
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Reclaiming free space

● Eagerly
● Run another pass over the data to update 

references.
● Lazily

● Wait for the next concurrent mark to update 
references.

● Once the references have been updated we can 
free the now empty regions.
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Shenandoah

Java
Init 
Mark

Java Final
Mark

Concurrent Mark Concurrent Evacuation

Java

We use as many threads as are 
available to do concurrent phases.
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Added benefit to forwarding pointers

Object

We can be lazy 
about updating
references to 
objects in from 
regions.

We no longer need 
remembered sets.
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Concurrent Marking

● SATB – Snapshot At The Beginning
● Anything live at Initial Marking is considered live.
● Anything allocated since Initial Marking is considered 

live.
● Used to update references, keep track of amount of 

live data for each region, and tell us which objects 
are live and need to be evacuated.
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What's tricky about SATB?

X

w

z

Y

X

Start of Concurrent Marking

Sometime during marking

Requires a write barrier to 
ensure overwritten values get 
marked.

y
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How to move an object while the program is 
running.

● Read the forwarding pointer to the from-region.

● Allocate a temporary copy of the object in a to-
region.

● Speculatively copy the data.

● CAS the forwarding pointer to point to the new copy.
● If the CAS fails, another thread already copied the 

object and you can roll back your speculative copy.
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Forwarding Pointers - reads

Reading an object in a From-region doesn't 
trigger an evacuation.

A

B

From-Region To-Region

Note: If reads were to cause copying we might have a “read storm” where every operation
required copying an object.  Our intention is that since we are only copying on writes we 
will have less bursty behavior.
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Forwarding Pointers - writes

Writing an object in a From-Region will trigger 
an evacuation of that object to a To-Region 
and the write will occur in there.

Invariant:  Writes never occur in from-regions.  

From-Region To-Region

A

B

A'
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Forwarding Pointers – writes of references

We resolve all references before we write 
them.

Invariant:  Never write a reference to a from-
region object into a to-region object.  

From-Region To-Region
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A'

B
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Forwarding Pointers - CAS

● CompareAndSwap(A.X, Foo, Bar)
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Forwarding Pointers - CAS

● CompareAndSwap(A.X, Foo, Bar)
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Forwarding Pointers - CAS

● CompareAndSwap(A.X, Foo, Bar)
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Forwarding Pointers - CAS

● CompareAndSwap(A.X, Foo, Bar)
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Forwarding Pointers - CAS

● CompareAndSwap(A.X, Foo, Bar)

From-Region To-Region
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A

Bar
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Bar'

Now we can CAS.
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Forwarding Pointers - CAS

● CompareAndSwap(A.X, Foo, Bar)

From-Region To-Region
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Bar
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Does that mean a write could keep a Java thread 
from making progress for an unbounded amount 
of time?

● No

● Copies are bounded by region size.

● Objects that are larger than a region are treated 
specially.
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Read Barriers?

Unconditional Read Barrier

movq    R10, [R10 + #-8 (8-bit)] # ptr

movq    RBX, [R10 + #16 (8-bit)] # ptr ! Field: 
java/lang/ClassLoader.parent
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Write Barriers?

● We need the SATB write barrier which adds 
previous reference values onto a queue to be 
scanned.

● We also need write barriers on all writes (even base 
types) to ensure we copy objects in targeted regions 
before we write to them.
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Costs and Benefits

● Costs

● Space
● An extra word / 

object can be 
expensive if you 
have a lot of small 
objects.

● Time
● Reads and Writes 

require barriers

● Benefits

● Ultra-low pause times 
which can be 
important to interactive 
and SLA applications.
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Current status

● We have something working.  

● We can pass small tests specjvm, specjbb

● We have passed the smoke test for
● Eclipse, Thermostat

● We are working on performance tuning
● Radargun, Elastic Search/Lucene
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Performance Tuning

● One very important area for application specific 
performance tuning will be Shenandoah heuristics.

● Lazy Heuristics
● GC as little as possible

● Aggressive Heuristics
● GC as frequently as possible to maintain minimum heap 

size.

● ...
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Encouraging preliminary results 
SpecJVM2008 compiler

● Not our target application.

● We are just starting performance tuning.

● Shenandoah
● Initial Mark (avg=5.65ms,max=9.53ms, total=1.40s)
● Final Mark  (avg=8.74ms,max=15.43ms,total=2.17s)

● As compared to G1
● (avg=31.38ms, max=75.48ms, total=6.84s)
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References

● “Trading Data Space for Reduced Time and Code 
Space in Real-Time Garbage Collection on Stock 
Hardware”  - Brooks

● “Garbage-first garbage collection” - Detlefs, Flood, 
Heller, Printezis.
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Future Work

● Finish big application testing.

● Move the barriers to right before code generation.

● Heuristics tuning.

● Round Robbin Thread Stopping?

● NUMA Aware?
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More information 

● Download the code and try it.
● http://icedtea.classpath.org/wiki/Shenandoah

● Blogs
● http://christineflood.wordpress.com/
● http://rkennke.wordpress.com/

● Email
● chf@redhat.com
● rkennke@redhat.com

http://christineflood.wordpress.com/
http://rkennke.wordpress.com/
mailto:chf@redhat.com
mailto:rkennke@redhat.com
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